广告投放广告投放   侵权处理侵权处理   关于本站关于本站
 APP下载 | 微博登录 | 微信登录 | QQ登录 | 登陆 | 注册

当前位置: 我爱分享网 > 教程分享 > 编程教程 > 消息队列Kafka、RocketMQ、RabbitMQ的优劣势比较当前位置: 编程教程 > 消息队列Kafka、RocketMQ、RabbitMQ的优劣势比较

消息队列Kafka、RocketMQ、RabbitMQ的优劣势比较

时间:2020-06-07    投稿者:网络收集    发布者:soujer  资源解压密码:soujer.com - 小 + 大

消息队列Kafka、RocketMQ、RabbitMQ的优劣势比较

高并发业务场景下,典型的阿里双11秒杀等业务,消息队列中间件在流量削峰、解耦上有不可替代的作用。

Mike前面分享了MQ消息队列的设计、核心原理、以及与RPC远程调用的区别等内容。今天我们一起来探讨:

  1. 全量的消息队列究竟有哪些?
  2. Kafka、RocketMQ、RabbitMQ的优劣势比较;
  3. 以及消息队列的选型;


一、最全MQ消息队列有哪些

那么目前在业界有哪些比较知名的消息引擎呢?如下图所示:


这里面几乎完全列举了当下比较知名的消息引擎,包括:

  1. ZeroMQ
  2. 推特的Distributedlog
  3. ActiveMQ:Apache旗下的老牌消息引擎
  4. RabbitMQ、Kafka:AMQP的默认实现。
  5. RocketMQ
  6. Artemis:Apache的ActiveMQ下的子项目
  7. Apollo:同样为Apache的ActiveMQ的子项目的号称下一代消息引擎
  8. 商业化的消息引擎IronMQ
  9. 以及实现了JMS(Java Message Service)标准的OpenMQ。


二、MQ消息队列的技术应用


1.解耦

解耦是消息队列要解决的最本质问题。

2.最终一致性

最终一致性指的是两个系统的状态保持一致,要么都成功,要么都失败

最终一致性不是消息队列的必备特性,但确实可以依靠消息队列来做最终一致性的事情。

2.广播

消息队列的基本功能之一是进行广播。

有了消息队列,我们只需要关心消息是否送达了队列,至于谁希望订阅,是下游的事情,无疑极大地减少了开发和联调的工作量。

3.错峰与流控

典型的使用场景就是秒杀业务用于流量削峰场景。

由于篇幅的关系,本文重点介绍消息队列比较,详细应用场景可参考我的往期文章《什么是流量消峰?如何解决秒杀业务的削峰场景》。



三、Kafka、RocketMQ、RabbitMQ比较


1.ActiveMQ

优点

  • 单机吞吐量:万级
  • topic数量都吞吐量的影响:
  • 时效性:ms级
  • 可用性:高,基于主从架构实现高可用性
  • 消息可靠性:有较低的概率丢失数据
  • 功能支持:MQ领域的功能极其完备

缺点:


官方社区现在对ActiveMQ 5.x维护越来越少,较少在大规模吞吐的场景中使用。


2.Kafka

号称大数据的杀手锏,谈到大数据领域内的消息传输,则绕不开Kafka,这款为大数据而生的消息中间件,以其百万级TPS的吞吐量名声大噪,迅速成为大数据领域的宠儿,在数据采集、传输、存储的过程中发挥着举足轻重的作用。

Apache Kafka它最初由LinkedIn公司基于独特的设计实现为一个分布式的提交日志系统( a distributed commit log),之后成为Apache项目的一部分。

目前已经被LinkedIn,Uber, Twitter, Netflix等大公司所采纳。


优点

  • 性能卓越,单机写入TPS约在百万条/秒,最大的优点,就是吞吐量高。
  • 时效性:ms级
  • 可用性:非常高,kafka是分布式的,一个数据多个副本,少数机器宕机,不会丢失数据,不会导致不可用
  • 消费者采用Pull方式获取消息, 消息有序, 通过控制能够保证所有消息被消费且仅被消费一次;
  • 有优秀的第三方Kafka Web管理界面Kafka-Manager;
  • 在日志领域比较成熟,被多家公司和多个开源项目使用;
  • 功能支持:功能较为简单,主要支持简单的MQ功能,在大数据领域的实时计算以及日志采集被大规模使用

缺点:

  1. Kafka单机超过64个队列/分区,Load会发生明显的飙高现象,队列越多,load越高,发送消息响应时间变长
  2. 使用短轮询方式,实时性取决于轮询间隔时间;
  3. 消费失败不支持重试;
  4. 支持消息顺序,但是一台代理宕机后,就会产生消息乱序;
  5. 社区更新较慢;

3.RabbitMQ

RabbitMQ 2007年发布,是一个在AMQP(高级消息队列协议)基础上完成的,可复用的企业消息系统,是当前最主流的消息中间件之一。


RabbitMQ优点

  1. 由于erlang语言的特性,mq 性能较好,高并发;
  2. 吞吐量到万级,MQ功能比较完备 
  3. 健壮、稳定、易用、跨平台、支持多种语言、文档齐全;
  4. 开源提供的管理界面非常棒,用起来很好用
  5. 社区活跃度高;

RabbitMQ缺点:

  1. erlang开发,很难去看懂源码,基本职能依赖于开源社区的快速维护和修复bug,不利于做二次开发和维护。
  2. RabbitMQ确实吞吐量会低一些,这是因为他做的实现机制比较重。
  3. 需要学习比较复杂的接口和协议,学习和维护成本较高。

4.RocketMQ

RocketMQ出自 阿里公司的开源产品,用 Java 语言实现,在设计时参考了 Kafka,并做出了自己的一些改进。

RocketMQ在阿里集团被广泛应用在订单,交易,充值,流计算,消息推送,日志流式处理,binglog分发等场景。


RocketMQ优点:

  1. 单机吞吐量:十万级
  2. 可用性:非常高,分布式架构
  3. 消息可靠性:经过参数优化配置,消息可以做到0丢失
  4. 功能支持:MQ功能较为完善,还是分布式的,扩展性好
  5. 支持10亿级别的消息堆积,不会因为堆积导致性能下降
  6. 源码是java,我们可以自己阅读源码,定制自己公司的MQ,可以掌控

RocketMQ缺点:

  1. 支持的客户端语言不多,目前是java及c++,其中c++不成熟;
  2. 社区活跃度一般
  3. 没有在 mq 核心中去实现JMS等接口,有些系统要迁移需要修改大量代码


四、消息队列选择建议


1.Kafka

Kafka主要特点是基于Pull的模式来处理消息消费,追求高吞吐量,一开始的目的就是用于日志收集和传输,适合产生大量数据的互联网服务的数据收集业务。

大型公司建议可以选用,如果有日志采集功能,肯定是首选kafka了。


2.RocketMQ

天生为金融互联网领域而生,对于可靠性要求很高的场景,尤其是电商里面的订单扣款,以及业务削峰,在大量交易涌入时,后端可能无法及时处理的情况。

RoketMQ在稳定性上可能更值得信赖,这些业务场景在阿里双11已经经历了多次考验,如果你的业务有上述并发场景,建议可以选择RocketMQ。


3.RabbitMQ

RabbitMQ :结合erlang语言本身的并发优势,性能较好,社区活跃度也比较高,但是不利于做二次开发和维护。不过,RabbitMQ的社区十分活跃,可以解决开发过程中遇到的bug。

如果你的数据量没有那么大,小公司优先选择功能比较完备的RabbitMQ。

以上,是Kafka、RocketMQ、RabbitMQ的优劣势比较。


转载知乎:https://zhuanlan.zhihu.com/p/60288391



免责声明:

本站提供的一切软件、教程和内容信息仅限用于学习和研究目的;不得将上述内容用于商业或者非法用途,否则,一切后果请用户自负。本站信息来自网络收集整理,版权争议与本站无关。您必须在下载后的24个小时之内,从您的电脑或手机中彻底删除上述内容。如果您喜欢该程序和内容,请支持正版,购买注册,得到更好的正版服务。我们非常重视版权问题,如有侵权请邮件与我们联系处理。敬请谅解!

上一篇:阿里RocketMQ消息队列原理&最佳实践

下一篇:大数据常用组件总结

本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除
投稿发邮件:400@tom.com 或联系QQ20700549
广告合作 侵权处理
官网一群:加入QQ群(请勿重复加群)
官网二群:加入QQ群(请勿重复加群)
官网三群:加入QQ群(请勿重复加群)
Sitemap
备案 皖ICP备17009674号-4 津公网安备 12011602000651号